PRELIMINARY COMMUNICATION

TRICHLOROTIN DERIVATIVES OF OSMIUM CARBONYL AND OF OSMIUM CARBONYL HYDRIDES

J.R. MOSS and W.A.G. GRAHAM Department of Chemistry, University of Alberta Edmonton, Alberta (Canada) (Received June 23rd, 1969)

The reaction of tin tetrahalides with metal carbonyl complexes leads in a number of cases to trihalotin derivatives. Thus, $Cl_3 SnCo(CO)_4$ ¹, *cis*- $(Cl_3 Sn)_2 Fe(CO)_4$ ², and $Cl_3 SnRu_2(CO)_5 Cl_3$ ³ have been prepared from tin tetrachloride and the corresponding metal carbonyl. We now find that this reaction with osmium carbonyls and carbonyl hydrides leads to trichlorotin derivatives of novel type.

The mononuclear carbonyl hydride of osmium, $H_2Os(CO)_4$ ⁴, readily reacts with tin tetrachloride at room temperature to afford the new complex *cis*-(OC)₄Os(H)SnCl₃ as colorless, air-stable needles, m.p. 101–104°. The compound was characterized by elemental analysis and by the observation in the mass spectrum of a multiplet of the expected structure corresponding to the molecular ion. The trimethyltin analogue, *cis*-(OC)₄Os(H)Sn(CH₃)₃, has very recently been reported as the product of the reaction (CH₃)₃SnH and Os₃(CO)₁₂⁵

The proton NMR spectrum of cis-(OC)₄Os(H)SnCl₃ in dichloromethane exhibits a singlet at τ 18.37, with spin—spin satellites corresponding to $J(^{119}Sn-H) = 136.0$ Hz and $J(^{117}Sn-H) = 129.5$ Hz. The tendency of SnCl₄ to react with only one Os-H bond is in contrast to the rapid and quantitative conversion of H₂Os(CO)₄ to the dihalides by CCl₄ and CBr₄⁴.

The recently prepared dinuclear osmium carbonyl hydride, $H_2Os_2(CO)_8^6$, also reacts readily with tin(IV) chloride to afford colorless needles of $H(Cl_3 Sn)Os_2(CO)_8$, m.p. 118–121°.

$$(OC)_4(H)Os-Os(H)(CO)_4 \xrightarrow{SnCl_4} (OC)_4(H)Os-Os(SnCl_3)(CO)_4$$

The eight bands observed in the carbonyl stretching region for the compound (Table 1) indicate a low symmetry. The NMR spectrum shows a singlet at $\tau 19.55$ with no observable coupling to thin. The new dinuclear complex reacts readily with CX₄ to form Os₂ X(SnCl₃)(CO)₈ (X = Cl or Br) for which eight carbonyl stretching bands are observed.

We have also observed the reaction of triosmium dodecacarbonyl with tin tetrachloride at room temperature to form the adduct $Os_3(CO)_{12} \cdot SnCl_4$; the infrared spectrum (Table 1) suggests that it has a linear $Cl_3Sn-Os(CO)_4-Os(CO)_4-Os(CO)_4-Cl$ arrangement analogous to that recently reported for $Ru_3(CO)_{12} \cdot SnCl_4$ ³. Other molecules of similar structure are $Os_3(CO)_{12} \cdot X_2$ (X = halogen)⁷ and $Os_3(CO)_{12} \cdot Ph_3PAuCl^8$.

J. Organometal. Chem., 18 (1969) P24-P25

ACKNOWLEDGMENTS

We thank the National Research Council of Canada for financial support.

TABLE 1

Compound	Bands in ν (CO) region in n-heptane soln.
OsH(SnCl ₃)(CO) ₄	2155m, 2095s, 2078vs, 2072s
$Os_2 H(SnCl_3)(CO)_8$	2142w, 2107vs, 2078s, 2065s, 2057 (sh),
	2054s, 2043vs, 2032m
$Os_2Cl(SnCl_3)(CO)_8$	2152w, 2118s, 2085vs, 2076s, 2067s,
	2054vs, 2048(sh), 2034m
$Os_2Br(SnCl_3)(CO)_8$	2151w, 2118s, 2084vs, 2076s, 2067s,
	2055vs, 2049m, 2035m
Os ₃ (CO) ₁₂ (SnCl ₃)Cl ^a	2152m, 2124m, 2086(sh), 2069vs, 2049vs,
	2030m, 2006m.

^ameasured in CH₂Cl₂ solution.

REFERENCES

- D.J. Patmore and W.A.G. Graham, Inorg. Chem., 7 (1968) 771.
 R. Kummer and W.A.G. Graham, Inorg. Chem., 7 (1968) 1208.
 R.K. Pomeroy, M. Elder, D. Hall and W.A.G. Graham, Chem. Commun., (1969) 381.
 F. L'Eplattenier and F. Calderazzo, Inorg. Chem., 6 (1967) 2092
 S.A.R. Knox, C.M. Mitchell and F.G.A. Stone, J. Organometal. Chem., 16 (1969) P67.
 J.R. Moss and W.A.G. Graham, Chem. Commun., (1968) in press.
 B.F.G. Johnson, J. Lewis and P.A. Kilty, J. Chem. Soc. A, (1968) 2859.
 C.W. Bradford and R.S. Nyholm, Chem. Commun., (1968) 867.

J. Organometal, Chem., 18 (1969) P24-P25